Heat Geo embedding

In this page we define the Heat Geo embedding class HeatGeo and the BaseEmb class.

The main parameters of HeatGeo are

Embeddings on PBMC for different denoise_regul

source

HeatGeo

 HeatGeo (knn:int, anisotropy:int=0, decay:int=40, n_pca:int=40,
          tau:int=10, emb_dim:int=2, filter_method:str='mar',
          order:int=32, lap_type:str='normalized', tau_min:float=0.1,
          tau_max:float=200, n_tau:int=1, log_normalize:bool=False,
          scale_factor:float=1.0, denoising:bool=False,
          graph_type:str='alpha', truncation_type:Optional[str]=None,
          truncation_arg:Optional[str]=None,
          treshold_type:Optional[str]=None, harnack_regul:float=0,
          norm_treshold:bool=True, mds_weights_type:Optional[str]=None,
          mds_weights_args:Optional[str]=None, denoise_regul:float=0.0)

Base class for embedding methods.

Type Default Details
knn int
anisotropy int 0
decay int 40
n_pca int 40
tau int 10
emb_dim int 2
filter_method str mar
order int 32
lap_type str normalized
tau_min float 0.1
tau_max float 200
n_tau int 1
log_normalize bool False
scale_factor float 1.0
denoising bool False
graph_type str alpha
truncation_type Optional None
truncation_arg Optional None
treshold_type Optional None “min” or “max”
harnack_regul float 0 Harnack regularization parameter, between 0 and 1.
norm_treshold bool True
mds_weights_type Optional None
mds_weights_args Optional None “heat_kernel”, “inv_dist”,“gaussian_dist”
denoise_regul float 0.0

source

BaseEmb

 BaseEmb (knn:int, anisotropy:int=0, decay:int=40, n_pca:int=40,
          tau:Union[int,str]='auto', emb_dim:int=2, order:int=32,
          random_state:int=42, scale_factor:float=2.0, tau_min:float=0.1,
          tau_max:float=1.0, n_tau:int=1, n_landmarks:Optional[int]=None,
          solver:str='sgd', lap_type:str='normalized',
          filter_method:str='pygsp', graph_type:str='alpha',
          mds_weights:Optional[str]=None)

Base class for embedding methods.

Type Default Details
knn int number of nearest neighbors
anisotropy int 0 anisotropy parameter in the diffusion kernel
decay int 40 decay parameter in the diffusion kernel
n_pca int 40 number of principal components to use for knn estimation
tau Union auto diffusion time
emb_dim int 2 embedding dimension
order int 32 order of the Chebyshev approximation, or steps in Euler’s method
random_state int 42 random state for the embedding
scale_factor float 2.0 power when computing the distance matrix
tau_min float 0.1 minimum diffusion time
tau_max float 1.0 maximum diffusion time
n_tau int 1 number of diffusion times for entropy.
n_landmarks Optional None
solver str sgd solver to use for MDS
lap_type str normalized type of Laplacian to use for the graph "normalized" or "combinatorial"
filter_method str pygsp method to use for Heat approx. "pygsp" or "euler", "mar"
graph_type str alpha type of graph to use for the embedding "knn" or "alpha" or scanpy
mds_weights Optional None weights to use for MDS